Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
نویسندگان
چکیده
In this paper, we propose a context-sensitive technique for unsupervised change detection in multitemporal remote sensing images. The technique is based on fuzzy clustering approach and takes care of spatial correlation between neighboring pixels of the difference image produced by comparing two images acquired on the same geographical area at different times. Since the ranges of pixel values of the difference image belonging to the two clusters (changed and unchanged) generally have overlap, fuzzy clustering techniques seem to be an appropriate and realistic choice to identify them (as we already know from pattern recognition literatures that fuzzy set can handle this type of situation very well). Two fuzzy clustering algorithms, namely fuzzy c-means (FCM) and Gustafson–Kessel clustering (GKC) algorithms have been used for this task in the proposed work. For clustering purpose various image features are extracted using the neighborhood information of pixels. Hybridization of FCM and GKC with two other optimization techniques, genetic algorithm (GA) and simulated annealing (SA), is made to further enhance the performance. To show the effectiveness of the proposed technique, experiments are conducted on two multispectral and multitemporal remote sensing images. A fuzzy cluster validity index (Xie–Beni) is used to quantitatively evaluate the performance. Results are compared with those of existing Markov random field (MRF) and neural network based algorithms and found to be superior. The proposed technique is less time consuming and unlike MRF does not require any a priori knowledge of distributions of changed and unchanged pixels. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images
In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...
متن کاملSemi-supervised Fuzzy Clustering Algorithms for Change Detection in Remote Sensing Images
For the problem of change detection it is difficult to have sufficient amount of ground truth information that is needed in supervised learning. On the contrary it is easy to identify a few labeled patterns by the experts. In this situation to avoid wastage of available information semi-supervision is suggestible to enhance the performance of unsupervised ones. Here we present the fuzzy cluster...
متن کاملImage Fusion and Fuzzy Clustering based Change Detection in SAR Images
Change detection in remote sensing images becomes more and more important for the last few decades, among them change detection in Synthetic Aperture Radar (SAR) images are having some more difficulties than optical ones due to the fact that SAR images suffer from the presence of the speckle noise. This paper presents unsupervised change detection in multi-temporal Synthetic Aperture Radar (SAR...
متن کاملFuzzy clustering algorithms incorporating local information for change detection in remotely sensed images
In this paper wk have used two fuzzy clustering algorithms, namely Fuzzy C-Means (FCM) and Gustafson Kessel Clustering (GKC) for unsupervised change detection in multitemporal remote sensing images. In conventional FCM & GKC no spatio-contextual information is taken into account and thus the result is not so much robust to noise/outliers. By incorporation of local neighborhood informationthe pe...
متن کاملUnsupervised change detection using fuzzy c-means and MRF from remotely sensed images
Unsupervised change detection using fuzzy cmeans and MRF from remotely sensed images Ming Hao, Hua Zhang, Wenzhong Shi & Kazhong Deng To cite this article: Ming Hao, Hua Zhang, Wenzhong Shi & Kazhong Deng (2013) Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images, Remote Sensing Letters, 4:12, 1185-1194, DOI: 10.1080/2150704X.2013.858841 To link to this article...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 181 شماره
صفحات -
تاریخ انتشار 2011